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Abstract. We apply a diagrammatic expansion method around the atomic limit (U � t) for the U-t-t′

Hubbard model at half filling and finite temperature by means of a continued fraction representation of
the one-particle Green’s function. From the analysis of the spectral function A(k, ω) we find an energy
dispersion relation with a (cos kx − cos ky)2 modulation of the energy gap in the insulating phase. This
anisotropy is compared with experimental ARPES results on insulating cuprates.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 71.30.+h Metal-insulator transitions and other electronic transitions

During the last decade of research work on high tem-
perature superconductors angular resolved photoemission
spectroscopy (ARPES) has played an important role in
elucidating their electronic properties [1]. An understand-
ing of the single particle properties in the normal state
is a prerequisite for a theory of a mechanism for super-
conductivity as well as for transport properties. Over the
years ARPES data have continuously provided surprises
and new insights and thereby served as a guidance to theo-
retical developments. The observation of the dx2−y2 -shape
of the energy gap, pseudogap structures in the metallic
phase [2,3], strong anisotropies in the quasiparticle (qp)
peak lineshapes and a possible partial destruction of the
Fermi surface [4], or the unusual frequency and temper-
ature dependence of the qp peakwidth [5] are examples
for intriguing information obtained from ARPES experi-
ments.

For the normal state an important goal is the descrip-
tion for the evolution with doping from the antiferromag-
netic (AF) and insulating parent compounds to the over-
doped superconductors. This demands control over the
spectral features of the Mott-Hubbard insulating state as
a starting point. Yet, it proved to be difficult to repro-
duce ARPES data for the single hole dispersion in the
insulating cuprate Sr2CuO2Cl2 [6] within t-J or Hubbard
models. In particular, for momenta along the Brillouin
zone (BZ) axis next-nearest neighbor (nnn) or even longer
range hopping amplitudes had to be introduced to achieve
a reasonable comparison to the measured spectra [7–15].
Even more striking are recent results on AF Ca2CuO2Cl2
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that demonstrated an anisotropy of the insulating energy
gap which was claimed to follow closely a dx2−y2-wave
modulation along a remnant Fermi surface with a mod-
ulation amplitude of ∼ 300 meV comparable in magni-
tude to the AF exchange interaction [16,17]. It has been
pointed out that a dx2−y2 gap modulation might follow
naturally in the context of a projected SO(5) theory [18]
unifying antiferromagnetism and d-wave superconductiv-
ity by a symmetry principle [19].

In this paper we show that a γ2
d(k) = (cos kx−cosky)2

modulation of the AF energy gap is realized in the half-
filled Hubbard model on a square lattice with nearest (nn)
and nnn hopping amplitudes. This result is obtained in
an analytic strong coupling expansion around the atomic
limit following a recently proposed strategy with a map-
ping to a Jacobi continued fraction representation for the
propagator [20]. Given that the Mott-Hubbard insulator is
the appropriate starting point for studying the hole doping
evolution in cuprates this intrinsic anisotropy may bear
an important preformed structure for the doped metallic
phase.

The single particle Matsubara Green’s function for the
Hubbard model is represented in terms of Grassmann
fields γ∗ and γ in the Feynman path integral represen-
tation by

Gij(τσ|τ ′σ′) = −〈Tτ ciσ(τ) c†jσ′ (τ
′)〉

= − 1
Z

∫
[dγ∗ dγ] γiστ γ

∗
jσ′τ ′ exp(−S[γ∗, γ]) (1)
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with the partition function Z and the action S = Skin +
Satom where

Skin[γ∗, γ] = −
∫ β

0

dτ
∑
i,j,σ

tij(γ∗iστγjστ + h.c.) , (2)

Satom[γ∗, γ] =
∫ β

0

dτ
[∑
i,σ

γ∗iστ (
∂

∂τ
− µ) γiστ

+ U
∑
i

γ∗i↑τγ
∗
i↓τγi↓τγi↑τ

]
. (3)

Here, c†iσ creates an electron at site i with spin σ, and we
restrict the hopping amplitudes tij to nn (t) and nnn (t′)
sites. U is the on-site Coulomb repulsion, µ the chemical
potential, and β = 1/T the inverse temperature.

The Green’s function is evaluated diagrammatically in
terms of a cumulant expansion around the atomic limit,
i.e. an expansion in powers of t/U [21]. For clarity we
outline the necessary calculational steps to derive this ex-
pansion in the path integral language in the same way
as described by Pairault et al. [20]. One starts from the
generating functional

Gij(τσ|τ ′σ′) = − δ2

δJ∗aδJb

[
1
Z

∫
[dγ∗ dγ] exp(−S[γ∗, γ])

× exp
(
−
∑
a′

J∗a′γa′ + γ∗a′Ja′

)]
J=J∗=0

,

(4)

where a = (i, σ, τ), b = (j, σ′, τ ′), etc. denote tripels of
site, spin, and imaginary time indices. As early on sug-
gested by Sarker [22] it is convenient to introduce auxiliary
Grassmann fields {ψ∗iστ , ψiστ} by performing a Hubbard-
Stratonovich transformation

Gij(τσ|τ ′σ′) = − δ2

δJ∗aδJb

[
1
Z

∫
[dψ∗ dψ]

∫
[dγ∗ dγ]

× exp
(
−
∑
a′,b′

t−1
a′b′ψ

∗
a′ψb′ − Satom[γ∗, γ]

)

× exp
(∑

a′

(ψ∗a′ − J∗a′)γa′ + γ∗a′(ψa′ − Ja′)
)]

J=J∗=0

(5)

with respect to the kinetic energy term equation (2). With
a shift of the integration variables ψa − Ja → ψa one
obtains

Gij(τσ|τ ′σ′) = − δ2

δJ∗aδJb

[
1
Z

∫
[dψ∗ dψ]

∫
[dγ∗ dγ]

× exp
(
−
∑
a′,b′

t−1
a′b′(ψ

∗
a′ + J∗a′)(ψb′ + Jb′)

)

× exp
(∑

a′

ψ∗a′γa′ + γ∗a′ψa′

)
× exp

(
−Satom[γ∗, γ]

)]
J=J∗=0

. (6)
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Fig. 1. Irreducible diagrams contributing to G(k, iωn) of the
U-t-t′ Hubbard model up to the order (t/U)3. The vertices

(•) represent local n-particle cumulants G
(n)
C . Each of the lines

represents a hopping process with amplitude either t or t′.

The path integral over the fields {γ∗iστ , γiστ} is then writ-
ten as

1
Zatom

∫
[dγ∗ dγ] exp

(∑
a′

ψ∗a′γa′ + γ∗a′ψa′

)
× exp

(
−Satom[γ∗, γ]

)
= exp

(
−
∑
n

Snint[ψ
∗, ψ]

)
,

(7)

where Zatom is the partition function with respect to the
action Satom. The interaction part of the action is given by

Snint[ψ
∗, ψ] = − 1

(n!)2

∑
{an,bn}

ψ∗a1
. . . ψ∗anψbn . . . ψb1

×G(n)
C a1...an|bn...b1 , (8)

where the G
(n)
C denote local n-particle cumulants (con-

nected Green’s functions). From equation (6) one ob-
tains the expression Gij(τσ|τ ′σ′) = (Γ−1−V )−1

ij (τσ|τ ′σ′)
[20], where Γ denotes the self energy and Vij(τσ|τ ′σ′) =
−tij δσσ′ δ(τ − τ ′) is the non-interacting Green’s function
for the auxiliary fields, i.e. V = V + V ΓV. The Green’s
function of the auxiliary field is defined by

Vij(τσ|τ ′σ′) = −〈Tτψiστψ∗jσ′τ ′〉

= − 1
Z

∫
[dψ∗ dψ]ψaψ

∗
b × exp

(
−
∑
a′,b′

t−1
a′b′ ψ

∗
a′ψb′

)

× exp
(
−
∑
n

Snint[ψ
∗, ψ]

)
. (9)

From the expansion of the auxiliary Green’s function in
powers of t/U one obtains the diagrams contributing to
Γij(τσ|τ ′σ′) and thus also the diagrammatic expansion of
the propagator Gij(τσ|τ ′σ′) which is illustrated in Fig-
ure 1.

As is known from previous work on strong-coupling ex-
pansions for the Hubbard model [21,23] the Green’s func-
tion calculated this way does not have the correct analytic
properties, because higher order cumulants contain also
higher order poles. This problem was circumvented in ref-
erence [20] by mapping the Green’s function as calculated
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by the diagrammatic expansion to a Green’s function GJ
in a finite Jacobi continued fraction representation [24]

GJ (z) =
a0

z + b1 −
a1

z + b2 −
a2

z + · · · − aN−1

z + bN

(10)

such that GJ has the same series expansion as G to the
same order in t/U . We use this technique and apply it to
the U -t-t′ Hubbard model.

Specifically, we have calculated the Fourier trans-
formed Green’s function G(k, iωn) at half filling µ = U

2 up
to order (t/U)4. While our independently obtained results
agree with reference [20] for nn hopping only, in the case of
a finite nnn hopping t′ an additional tt′2/U3 diagram con-
tributes to G(k, iωn) as shown in Figure 1. In this type of
diagrams the vertices represent local n-particle cumulants
G

(n)
C (connected Green’s functions). Each line between two

vertices represents a hopping process between two sites. In
the absence of a Wick theorem for the local Green’s func-
tions the higher order cumulants must be calculated sep-
arately. The resulting algebraic expressions become very
involved for higher order cumulants; for the performance
of this diagrammatic expansion we have therefore devel-
oped a special purpose computer algebra code.

As a result we obtain a Jacobi continued fraction ex-
pression for GJ that has eight fraction levels, i.e. the co-
efficients aN in equation (10) vanish for N > 8. This ter-
mination for GJ translates into eight simple poles. Each
of the continued fraction coefficients ai, bi (i = 1, . . . , 8)
is given by a fourth order polynomial in t/U or t′/U , re-
spectively, with coefficients that depend on T , µ, U , and k.
The explicit result for GJ is accessible electronically [25].
In Figure 2 we show the corresponding spectral function

A(k, ω) = − 1
π

ImG(k, ω + i0+) (11)

for different k = (kx, ky) along the path (0, 0)→ (π, π)→
(π, 0) → (0, 0) in the first BZ. On the scale of this plot
only six out of eight poles of GJ (k, ω) carry significant
and visible spectral weight.

In analyzing the spectrum we map out the dispersion
of the lowest energy hole excitation, i.e. the dispersion
of the first peak below the gap (marked by an arrow in
Fig. 2). Its spectral weight is largest at the BZ center and
drops monotonically towards (π, π). Figure 3 shows the
peak dispersion for different temperatures. Upon cooling
the system approaches the AF ordered ground state with a
doubled unit cell and a reduced magnetic BZ (determined
by cos kx+cosky ≥ 0). The dispersion along the zone diag-
onal approaches a perfectly symmetric shape with respect
to the point kd = (π2 ,

π
2 ) on the magnetic BZ boundary

reflecting the growing AF spin correlations. Remarkably,
along the BZ axis the dispersion remains very flat at all
temperatures. In fact, the dispersion along the axis is ob-
tained flatter than in previous numerical studies of Hub-
bard or t-J models [7,12,26,27]. In units of the exchange

−12 −8 −4 0 4 8 12
ω/t

(0,0)

(π,π)

(π,0)

(0,0)

k

Fig. 2. Spectral function Ak, ω) of the half-filled U-t-t′ Hub-
bard model as a function of ω along the path k = (0, 0) →
(π, π) → (π, 0) → (0, 0) through the first Brillouin zone for
U = 10t, T = 0.2t and t′ = −0.45t as obtained from the strong
coupling expansion to order (t/U)4.
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Fig. 3. Temperature dependence of the dispersion E(k) of the
low energy peak (marked by an arrow in Fig. 2) along a selected
path in the first Brillouin zone for U = 10t and t′ = −0.45t.

coupling J = 4t2/U the total bandwidth of the energy dis-
persion is 1.58 for T = 0.2t, which is roughly consistent
with experiment and previous calculations.

In Figure 4 we compare our result for the single hole
dispersion with the ARPES data on Sr2CuO2Cl2 from ref-
erence [6]. For U = 10t the parameters t and t′ were chosen
to obtain a best fit to the data. The overall agreement, in
particular along the BZ axis, is quite satisfactory.

Hopping amplitudes beyond nnn hopping are found
unnecessary for reproducing the flat dispersion along the
BZ axis. ARPES experiments on insulating Sr2CuO2Cl2
subsequent to reference [6] report different results on the
flatness of the dispersion along this line [14,28]. This is-
sue still seems experimentally unresolved (for a discussion
see e.g. Ref. [29]), but it is interesting to note that the
flat dispersion – in contradiction to previous theoretical
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Fig. 4. A comparison with the ARPES dispersion for
Sr2CuO2Cl2 taken from reference [6] (black diamonds) and
reference [17] (white circles). Error bars are shown at some
selected experimental data points. The parameters in the the-
ory were chosen as U = 10t, T = 0.2t, t′ = −0.45t, and
t = 0.605 eV.

results – is obtained naturally within the presented strong-
coupling theory for the Hubbard model with nnn hopping
only.

The deviation of the theoretical result from the exper-
imental data points along the BZ diagonal, i.e. the lack
of symmetry with respect to kd – as realized in the AF
state – is due to the finite temperature. In fact, the range
of applicability of the t/U expansion has a lower bound
in temperature. (Following the arguments of Ref. [20] we
estimate that our results are valid for T > 0.16t.) When
the magnetic correlation length is much larger than the
hopping range as given by the order of the t/U expan-
sion, an accurate description of the single particle Green’s
function is no longer expected. The data were taken 100 K
above the Néel temperature TN = 256 K of Sr2CuO2Cl2;
at this temperature the magnetic correlation length is al-
ready as large as 250 Å as measured by neutron scattering
[30]. Nevertheless, the flatness of the dispersion along the
BZ axis in the t/U expansion is a robust and temperature
insensitive feature.

In Figure 5 the calculated energy dispersion E(kd) −
E(k) of the lowest energy peak and the experimental data
are plotted along the BZ path from kd to (π, 0) which is
parameterized in the form |γd(k)|/2. Originally, the data
of reference [16] (black squares) were anticipated to imply
a dx2−y2-modulation of the energy gap which in the pa-
rametrization of Figure 5 would translate into a straight
line. The perfectly linear relation between E(kd) − E(k)
and |γd(k)| along the chosen path would furthermore im-
ply an unreasonable cusp-like feature of the dispersion on
the magnetic BZ boundary. Indeed, the more recent data
by Ronning et al. [17] (white circles in Fig. 5) resolve this
problem and rather provide evidence for a quadratic de-
pendence of the energy gap on |γd(k)| in the vicinity of
kd. Given the experimental error bars of reference [6] in-
cluded in Figure 5 and in the absence of an error estimate
for the recent data by Ronning et al. [17] our results are
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Fig. 5. Same data as in Figure 4 along the BZ path from
kd = (π/2, π/2) to (π, 0), but here E(kd) − E(k) is plot-
ted as a function of |γd(k)|/2. In addition, ARPES data on
Ca2CuO2Cl2 (from Ref. [16]) are shown (black squares).
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Fig. 6. Dispersion along the path from kd = (π/2, π/2) to
(π, 0) relative to its value at kd as a function of (cos kx −
cos ky)2/4 for different temperatures with U = 10t and t′ =
−0.4t.

clearly compatible with experiment. With the same pa-
rameter set used for the fit of the ARPES dispersion in
Figure 4 the gap modulation amplitude ∼ 300 meV as
measured in Ca2CuO2Cl2 [16] is reproduced as well.

Figure 6 shows the temperature dependence of the gap
modulation. In fact, when plotted versus γ2

d(k) it becomes
evident that the gap approaches a perfect γ2

d(k) momen-
tum dependence at low temperatures. For t′ = 0 the mod-
ulation vanishes in the expansion up to the order (t/U)4

because the k dependence of all diagrams to this order
arises in the form coskx + cosky for t′ = 0 which vanishes
on the BZ boundary for t′ = 0. If diagrams of order (t/U)6

or higher were taken into account, a small modulation is
expected to appear also for t′ = 0.

It is an interesting observation that the SDW mean-
field solution of the U -t-t′ Hubbard model, where the
energy dispersion takes the form of two energy bands



Ph. Brune and A.P. Kampf: Anisotropy of the energy gap in the insulating phase of the U-t-t′ Hubbard model 245

E±(k) = −4t′ cos kx cos ky±
√
ε2(k) +∆2, shows the same

momentum dependence along the magnetic BZ bound-
ary, since both are ∼ (cos kx)2 for kx = π − ky. Even
though the SDW mean-field result does not agree with the
experimentally obtained dispersion over the entire BZ [7],
this observation clearly shows that it already captures
some features of the strong-coupling result.

In summary, we have found in a strong coupling expan-
sion to order (t/U)4 that the energy gap in the insulating
phase of the half-filled U -t-t′ Hubbard model develops a
(cos kx − cos ky)2 modulation at low temperatures. With-
out the need to include hopping amplitudes beyond nnn
an excellent fit is achieved for the single hole dispersion
in Sr2CuO2Cl2. With the same dispersion fit parameters
also the calculated gap modulation amplitude compares
well with the ARPES data. It is natural to expect that
these spectral features in the insulator carry over to the
metallic, doped case; the consequences and the connec-
tion to anisotropic pseudogap structures or even d-wave
superconductivity remain yet to be understood.

We thank D. Duffy and F. Ronning for discussions and S.
Pairault for sharing his insight into the efficient calculation of
high order diagrams. This work was supported by the Deutsche
Forschungsgemeinschaft through SFB 484.
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